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FOREWORD

This report is concerned with the problem of real-time filtering
of gravity-gradiometer readings on board a uniformly horizontally moving
vehicle to produce estimates of the gravity deflection and gravity anomaly

at the vehicle's position,

The report is divided into two chapters. In the first chapter the
gravity variations are modeled as arising from random variations in mass
density along a line immediately below the vehicle at some depth. Using
first a discrete version of this model in which the state consists of
the density at a moving sequence of position extending from far behind to
far in front of the vehicle, the covariance of the steady-state optimal
filter is obtained by the Chandrasekhar algorithm. To confirm these re-
sults, a continuous model is introduced and the optimal filter is obtain-
able from Wiener filter theory. The solutions of the corresponding
Wiener-Kopf equations for the filter transfer functions take relativély
simple forms when the measurement consists of the spatial derivative, in
the direction of motion, of the quantity to the estimated, and when the
measurement accuracy is sufficiently high. The corresponding transfer
functions in this "asymptotic" 1limit are of first or second order depend-
ing on whether the gravity anomaly or gravity deflection is being estim-
ated.

In the second chapter, a more realistic continuous model, due to
Heller, is used to describe the gravity variations. Asymptotic Wiener
filter results for high measurement accuracy are found to take the same
form as in the first chapter. These results are extended to cases in
which more than one measurement is incorporated into an estimate, The
results concerning gravity deflection estimation are unambiguous: cross-
track deflection needs only first-order transfer-functions, but in-line
deflection needs second-order transfer functions. The inclusion of the
gravity-gradient component . (x being the direction of motion) in the
estimation of the gravity anomaly g, does not lead to simple asymptotic
forms for the filter transfer functions. The results obtained in Ch, I

with the discrete model suggest, moreover, a substantial increase in
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o~ - o st Sl i ok i Bt il i o kol Bl e 8 o Lk iRl B s W e



\

accuracy when T is included, along with TI__,
XX Xz
g .
z

in the estimation of

Chapter 1I concludes with the outline of a method, based on
rational approximation to the transcendental spectral density components,

for constructing a steady-state filter without the asymptotic approxima-
tion used earlier,
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CHAPTER 1

o e N e oo d i e b e et L e e

A. INTRODUCTION

The disturbance mass model which causes the deflection of the

vertical and gravity anomaly is assumed to be a one-dimensional hori-

zontal line mass distribution below the vehicle's path, The stochastic
property of the line mass density is considered to be a white noise.
The intensity of the white noise and the depth of the line mass are
chosen to produce the same root mean square values and correlation dis-
tance for the gravity deflection as the measured values on the earth

surface.

The optimal filter for the gradiometer measurement is sought by 4
two methods. First, we convert the model into a discrete model; then
find the steady-state optimal filter by the Chandrasekhar algorithm.
The other method consists of finding the stationary filter by solving a

Wiener-Hopf equation.

The results obtained by both methods are in good agreement with

each other. Of noteworthy interest is that the double measurement,

r r = I i
e together with i( e zz) yields information on gx comparable

with that from rxx alone, and on g much better than that from sz. : | 3

B. DISCRETE MODEL

1 .B-l System Equations

1 In a coordinate frame fixed to the vehicle which moves with

velocity v with respect to the earth, the mass distribution of the
i earth seems to be time-varying and the rate of change of the mass density

is described by the following partial differential equation:

(1-1)




where p denotes the mass density of the earth, and V 1is the gradient

operator,

For simplicity, we assume that the disturbance mass is concentrated 5
on a straight line with finite length below the vehicle path, see Fig.
I-1, when the vehicle travels with constant speed v toward negative
x direction, (1.1) reduces to

dp(t,x dp(t,x (1.3)

At the boundary x = -4, the density p(t, - £) may be considered
as a random process which is assumed to be a white noise with zero mean

because we are interested in only deviation from the mean:

B{o(t-Do(t', -0} = § 8(t-v)) (1.3)

where E denotes expectation operator, and q 1s the power spectral
density of the white noise. Though (1.2) does not have any process noise,

the boundary condition (1.3) always brings uncertainty into the system,

On the vehicle, the gravity and gravity gradient due to the dis-
turbance mass are expressed in terms of integrals of the mass density

multiplied by weighting functions:

y) :
Zk(t) S 4 s-l "kp(t)x)dx: k=12,...,5 (1.4)

where
[7k]= [g, g, r

[w & X - --r2 + 3x2 -r2 + 3D2 -3Dx * ;
k) 3
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B-2 Discrete Formulation

The formal application of Kalman filter theory leads to a partial
differential equation for the states error covariance , To
avoid this difficulty, here, the system equations (1.2), (1.3) and (1.4)
are discretized such that a distributed parameter system becomes a
lumped parameter system and the conventional Kalman filter theory can

be applied.

The time and space increments, At and Ax, respectively, are
chosen as VAt = Ax so that nondissipative property of the original

equation (1.2) can be preserved). In this case, (1-2) may be written as

Mj+l(ti+l) = Mj(ti), G =L, caiey N =T {1.8)
where Mj(ti) denotes the mass of the j-th segment at time ti' The
boundary condition (1.3) may be replaced by

f by 5

ElMI(ti)Ml(te)s = qudt B (1.8)

where Sie is the Kronecker delta,
The expressions for gravity and gravity gradient (1.4) may
easily be converted into a discrete form as follows:
N
2 (t) = v 35 W, M(t) (1.7)
j=1
where
2 2 2 2
X, D -r, + 3x -r, + 3D -3Dx_. |T
[w ] R | S T _J____J. e J
kj 3 ) 3 ) 5 ’ 5 b 5
e r, r i r
J J J J J
d
b rJ = x? + D2 .
.

R T W Nt Iy JU Y T




B-3 Chandrasekhar Algorithm

In order to make a good approximation, we have to take the length
of the line mass, 24, as large as possible, and the space increment Ax,
as small as possible, When the parameters of the system are not time-
varying but constant, the Chandrasekhar-type algorithm developed by
Kailath et al. [Ref. 1] has the possibility of substantially reducing
the amount of computation and compu‘:«r capacity required below those
necessary with the Riccati equation., A brief explanation of the é
Chandrasekhar algorithm is given in Appendix 1.

our case, the state vector is the mass of each segment i

{Mj(ti)}T, j=1, «.., N, and matrix F in App. 1 is given by |

F = . . (1.8)

FIRTUTIL SR (1.9)

The measurement matrix H 1is obtained from (1.7). For example, when

sz is used as a measurement, H is given by

-3Dx .
g e fr—db, a1, ., W (1.10)

r

J

The power spectral density Q of the process noise is given by




The power spectral density of the measurement noise R 1is given by

r
R = Z% for one measurement (1.12a)
or
r
58 0
N P
R = & for a double measurement (1-12b)
c
9 At

where rc is the power spectral density of the continuous measurement

noise,

Since the dimension of process noise is only one and that of
measurement is one or two, the number of computations for one step is
on the order of N2 X 2 or N2 X 3. Hence, as the number of the segment
N becomes large, the superiority of the Chandrasekhar algorithm over
the Riccati equation becomes clearer. The latter needs an order of N3

computations for one step.

B-4 Power Spectral Density and Auto-correlation Function

Before we proceed to numerical computation discussed in the pre-
vious section, we mention the gravity field produced by an infinite line
mass with white noise spectrum. Extending the integral limits in (1.4)
to infinity, (1.4) may be regarded as convolution integrals of mass
density p and weighting functions. Since the Fourier transform of
the weighting functions are given by modified Bessel functions of the
second kind, the power spectral density of the gravity and gravity grad-
ient are easily obtained. For the deflection of the vertical along the
track, gx, and the gravity anomaly g, we find that

2 22
6g (w) = 4y°qu Ko(Dw)

- (1.133)

2 2.2
Qg(uo = 4y qu)Kl(Dw) (1.13b)

where Ko and K1 are zero and first-orde: modified Bessel functions,

afew

< . A —————— 7’1
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respectively. The rms values of 8, and g are given by

fgd. = EJM’ZD:" (1.14a)
(gl = §J3nq/203 . (1.14b)

Auto-correlation functions of g, and g are obtainable not analytically

but numerically, and shown in Fig, I-2,

Two parameters to be determined, namely, white noise 1ntensity and
depth D, are chosen such that the resulting rms value and correlation
distance of g, .are the sea-level values 8y X 8 arcsec, and 20 n, mi.,
respectively [Ref. 2], where go = 9.8 m/s2 and the correlation distance
is defined as the shift distance at which the ACF drops to 1/e of that

for zero shift, The result is:

8 5
Yoy = 1.65% 100 LR feec

=]
1]

36 km .

B-5 Numerical Results

We have investigated the estimation error covariance of the de-
flection of the vertical and the gravity anomaly, when we used different
components of the gravity gradient tensor as the measurements, The

results are shown in Figs. 3 and 4. The conclusions drawn are as follows.

1. As expected, among "single' measurements, I .x 1is preferable
to sz for estimating its integral 8y while sz is preferable to
txx for estimating its integral g.
2, The double measurement, T together with &(I" _ - T ) yields
zXx XX 2z
information on 8y comparable with that from Fxx alone and on g much
better than that from F%z alone, These measurements consist of the out-

puts of a single rotating gradiometer with its spin axis aligned to the

g-axis,

-
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At this time, we do not understand fully the reason for Conclu-— |

sion 2, A possible explanation is as follows,

For a one-dimensional gravity source, we have an identity, namely,

' =-g/D. Since I' _+ T 47T is always zero, we find that
vy xx yy 2z
= I =-I' _ + g/D. Therefore, T has not a weak but strong cor-
zz XX zz

relation with both g _and g. Since XTI - T, ) = AT g/2b,

we can say that, qualitatively, the double measurement provides a
better estimate of g than that from sz alone. On the contrary,
it cannot provide better estimate of 8y than that from Fxx

alone. However, since we have a good estimate of g, at least for 4
relatively low measurement noise, the measurement %(Pxx - Fzz)
gives a satisfactory estimate of Pxx and hence of By For
example, for 1 Ebtvos measurement noise rms value with 10 sec
average, the estimation error covariance of g/D is obtained to
be on the order of 0,001 E. Assuming that the correlation time
is on the order of 20 mins, we can say that the maximum power
spectral density level is of the order 10—21 (sec-s); hence,
much smaller than that of the measurement error which is of the

order 10-17 (sec-s).

The computer program is shown in Appendix 2. The computer language

used is not FORTRAN but APL (A Programming Language),

e

-11~
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B-6 Wiener Filter Theory

If the filtered estimate ? of some stationary process vy,
based on a noisy vector measurement m§1+ n, where n 1is m-dimensional

white noise, is given by:

1xm

y(s) = WT(s)[z(s) + n(s)] (1.15)

where the transfer function vector ¥(s) has only left half plane (LHP)

~ -~
poles, the mean-squared value of the estimation error, y =y - y, is:

Joo nxXm
o; = 5= j P{va(-s)(wzz(s) + 0 )¥(s) - oT(-snzy(s)

nJ
(1.18)

- o, (-90¥(s) + o (a)fas ,

where ¢yy(jw) is the spectral density of y, the Fourier transform
of its ACF (autocorrelation function),. i.e

jw
myy(gw) = .[;n Cy(x) cos uwxdx ,

(C (x) being the ACF of y(x)), and . °zy are the transforms of the

NXM
ACF of the vector z and of its cross-correlation with Y.

The optimum V(s) is determined by the requirements: é

1) 0; in (1.15) must be finite; :
(1.17) E
2) (®zz(s) + ¢n)*(s) - ¢zy(s) has no LHP poles.
The minimum mean - squared estimation error is then
1
o = 3 i{ (s) - o, (-s)¥(s)}as , (1.18)




where c¢ 1is any contour large enough

c s-plane

to include all the LHP poles of the
integrand in (1.17).

-
»-

B-7 Asymptotic Results for Flight Measurement Accuracy

We will apply the method of the previous section, B-6, to the
estimation of gz(= -g) from the single measurement sz, the spatial
derivative of gz in the direction of motion, The continuous analogue

of the second component of equation (1.7) is:

g, = %% (:) p (1.19)

where P is linear density, a random process, and (:) denotes convo-

lution. Now the Fourier transform of ?D/r3 is

© YD cos wx 27
S-m (x2 ’ DZ)%dx =, 5= nxl(u) i (1.20)

where Q = wD, and K, is a modified Bessel function. Hence,

1
. P 22 '
Py g (W) = =@ K, (2)o, (1.21)
zZ zZ D :
and Q. and . are obtained from (1.21) by multiplication by
Xz, qz XZ X2

by =-jw and wz. ¢p is the earlier q

To proceed further, we need a rational approximation to QKI(H).

A suitable approximation here is

22,173
(2.2522 + nz)2

Qxlun ~ . (1.22)

The related function szl(ﬂ) and its approximant are shown in Fig, I-5,

2
(0 Kl(u) is proportional to the transform: rzx/p_)
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Introducing S = SD, condition 2 of Eq. (1.17) becomes

43212q)$)-82) (s) 432723
+ @ | ¥W(S) + ——s
D4(a2 & S2)4 n D3(a2-82)4

has no LHP poles; where B = 22,173, a = 2,252,

The optimal transfer function W(S) is thus given by

(S + a)4

. (s+s8))
JI=11 fi

1-2ws) =

where -Sj(j =1, ..., 4) are the four LHP roots of the equation
4 2 2,4 2 2
- - 4B :
p g (a” - 87) TS

Now, for small o, Eq. (1.25) nas a small LHP root:

~ a4D2 J q’n
S = = e
2v8 P

as well as three large LHP roots given by

2
4
ol

n

A low-frequency approximation to (1.24) is thus:

15

(1.23)

(1.24)

(1.25)

(1.26)
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4
1 = sy(s) = l-%v(s) = - = _1[L1
zBY a4D2 = S 4 E
2 (S + 2By ;;-)
» th:wp g
(1.27)
where L = 2 2% ¥
ab Jcon7q>p

The result (1.27) could have been obtained more directly by replac-
ing QKI(Q) by B/a4 (~ 0.87 instead of unity, which is really the correct
limit as O - 0) and requiring that

ap’y?

5.2 s[1 = sy(s)] + 9,¥(s)  have no LHP poles

(1.28)
1 - sy(s) - 0 as S 3 @
The meaﬂ-squared estimation error is
: ; aB%%, ’ 4%y, b
g = e— 1 - d = 1.29
gz %3 asnz : SV(S)] c a802L g )

If, for example, measurement accuracy is 1 E every 10 sec at speed 50 m/s,

o = 0,5x10 18 * 2
n

km/sec”, and, using D = 36 km, L = 8700 km, and n-zs /o: = 1.1x10 :
z z 1

The straight line in Fig. I-4 shows the asymptotic behavior of this ratio

according to (1.29). Note that L is "integration length" for the first-

order integrator" ¥(s) = 1/(s+ 1/L). The numerical value 8700 km is

certainly excessive for some applications,

We turn next to the estimation of gx from the single measurement

rxx' Since




and ‘Yx/r3 has Fourier transfosm

27 d
D dQ [Q'Kl(m] ;
Low frequency approximation to ¢ is
g 8
¢ xX
| 2
! 8 1 A (—439) & (1.30)
| = ——
3 ExEx d2 a6 "
35 and cpr and cpr r are obtained by multiplication by -jw and wz.
xx*8x XX XX

T

The optimum filter transfer-function is thus obtainable from the

|
l requirements
!
1 -64B%y e
| e 5 [1 - sy(s)] + cpn\y(s) has no LHP poles;
a
(1.31)
s[1 - sy(s)] -0 as s 5 o,
b Hence
g 2
: g |
¥(s) = S W W (1.32)
" 4+ =
L L2
4 Mchp
where (1/4)L° = —7 — - The mean-squared estimation error is
a "o ,;
|
3 ; 648272s2@p }
O'g = ?ﬂj f - 12 [1 - Bf(s)Jdl |
x & Q
(1.33)
6432’Y2q)

p 4 g 34 1/4
12_3 i a3 i “ %

a L




If, again, measurement accuracy is 1 Eftvos every 10 sec (at speed
50 m/sec), we find:

L = 720 km
and <
X - 0.26 x10° 2,
2
o
g
according to (1.33).

E x

! The straight line in Fig. I3 shows the asymptotic behavior of this ratio,
1

?

i

1

4

!

j

|

T
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Chaptcer II

TWO-DIMENSIONAL GRAVITY SOURCE TREATMENT

A. THE HELLER MODEL

This model assumes several independent layers below the earth sur-

face, of "white-noise" potential variations Uwi(i = A e 0D The
external gravity potential fluctuation U at radius r from the

earth's center is expressible by Poisson's integral formula

SRE = Rf) Uwi
U(r,8,9) = Z 2 2 3/2 o o
i 45 (r + Ri - 2rR cos )

where Ri is the radius of the i-th layer, | denotes the angle be-
tween directions (8, @) and (8', @'), and dQ' = sin @' do' do'.

For the description of fluctuations with wavelengths substantially

less than earth radius a 'flat earth' approximation to (1) is sufficient:

(z + Di)Uw'(x',y‘)

o i
U(x}Y)z) = %1" fJ? - dx'dy', (2)

[(x-xt) 2(5-3" ) 2 (24D ]F

where 2z is altitude above earth surface, and Di in the depth of the

i-th layer, | 4
Note that formula (2) corresponds not to two-dimensional white-noise
mass density variations at depths D, but rather to layers of random

i
mass density 'doublets':

T REEEYE

|+
|+
.

FLEYY




Sy

T TRt T <

Heller proposes five separate layers but only the three shallowest

layers contribute appreciably to the short wavelength fluctuations.

Table 1 gives the depths D_1 and the spectral densities ?;

for the potential variations Uw

i
Table 1
i D, (km) mi(kms/sec4)
-8
1 16.3 7.13 x 10
-4
2 92.5 1.07 X 10
-2
3 390.5 1.16 x 10

The two-dimensional Fourier transform of relation (2) takes a

simple form

“zi(l)
U[wx:wy; z] = ? e Uwi(wx) wy) (3)

where
z. = Z & D
i i
{ W = Ju? + WP
x y

and Uwi[wx, wy] denotes the transform of Uwi(x, ¥y

% -j(w x+w y)

X

UW [wx,wy] = SS e . Uw (x,y) dxdy .
i -00 1

—— o g




B,

The two-dimensional transforms of gravity fluctuations By gy’ g,

are obtained by multiplying (3) by ij, jwy, and -w respectively.

The mean-squared fluctuations in L gy, gz are thus obtainable:

00

i 2 % % 2 B -2z W

(az,c,a ) =——2§ (uy, w, w) Z0 i dwdw .
€x gy €, 45 - ¥ = iie &

This leads easily (substituting wx = W Ccos g, wy = w sin @) to

® 00 =2z W )
0'2 =0"2 =%0‘2 =71 ZES e wdw:-g-,—tz 14 (4)
€x &y % n s . (221)

The two-dimensional Fourier transform of Pyz' Pzz' etc., are
obtained from (3) by multiplication by —jwyw, w?, etc. The two-
dimensional spectral-density matrix relating By gy, 8, I"yz, I“zz
is thus

2 . ; 2
w w W Jw w -0 W W -jw w
X Xy x Xy X
2 . 2 .
w W w Jw w -0 W -jw W
XYy y ¥ .y
z e-2ziw jw W jw W w? jw wz -w3
i Py Ju J0g Jug _ 5)
wZ i wz w2w2 Jjw w3
- W W =Ww W
Xy y Iy y y
2 2 3 ~jw w w4
jw w L -Ww .

We need, of course, the one-dimensional spectral-density matrix

along the line y = 0. This is obtained by the operation

w3l




A ML it 1 b b i S5

= i: () duy '

We thus obtain, for each layer i and for states gx/zzi, gy/zzi' g?/zzi,
4
0 -3931('1(9) 0 -3k (2)

93[1('1'(9)-1{1(9)] () 94[1(-1"(9)-1:1(9)] 0

0 a3k () 0 941;'1' 1(Q)

O G I o[k 1+ (0)-Ky" (9)] 0

5
0 sz4xin(a) 0 QKL (Q

o -{lcosh u
S e coshu du
0

where
Kl( §2)

a modified Bessel function.

The gravity-gradient components Pxx' ny, sz, which are the W

spatial derivatives By gy, g, is the direction of motion, are

i
! easily included by multiplication by + ij. The component ryy is
| -
i obtainable from Pxx and Pzz by Laplace's equation,
i

The zero correlation between gy, ny, and the remaining states

implies, of course, that the optimal estimate of gy can involve

-22~




only the measurements ny, Pyz, while the optimal estimates of g, and

c i -
€, an involve only the measurements rxx' sz, Fzz (or Pyy)

B. ASYMPTOTIC RESULTS FOR VERY ACCURATE MEASUREMENTS

In accordance with the results obtained with the one-dimensional
density fluctuation model, we anticipate that, in the case of very
accurate measurements, a low—frequency approximation to the spectral-

density matrix will suffice. The low—frequency form of (6) is:

o2 0 jQ 0 -2j0
0 2 0 B 0 ;
-3iQ 0 2 0 -8 (D |
P. |
N2 Ny |
It(221)5 0 i 24 0 3
2j0 0 -6 0 24

Hence, for several layers, the low-frequency optical-density matrices

for gy, ryz and for gx, gz, rzz are, respectivly:
2k -6k k s2 Kk, s -2Kk_S
3 4 1 3
and
-6k 24k —kys s (8)
4 5
+2kss -6k4 24k5

where kJ = 1/ % [@/(221)3] and s denotes ju, .
i

Example (1): Estimation of gy from rxy (or of g, from rxz)

v(s) (rxy + n)

-
»
|
w>
«
1]

g. = 8.-8
y y y E

-23-




Then, according to Eq. (1.16) and Eq, (8):

Joo X
2 1 2
oz = o= S {\y(—s)(-zkas + q)n)v(S) + ¥(=5)(2kgs)

y e
? 4 + (-2k38)t(s) + 2k3}ds
; = 1)
| i S [2k3[1 + sy(-s][1l-sy(s)] + cpnv(-s)v(s)}ds
: e

which is minimized by choosing (s) so that

4 1 - sy(s) » 0 as S » @
(qh - 2k352)w(s) has no L.H P poles.

"

Hence (s) = 1/s+(1/L)], a "first-order integrator" with "integration
length"” L = J2k3;¢n .
1 ' The mean-squared estimation error is
i
2 1
(,Ey = 5% 2k3[1 - sy(s)]ds = ‘/§k3q)n'

This result is entirely similar to that obtained earlier with the

one-dimensional density fluctuation model .

i

|

! If we suppose again that independent measurements of rxy (or rxz)

1 with an accuracy of 1 Eotvos are obtained every 10 sec at a velocity ;
j of 50 m/sec, i.e., every 0.5 km, then ®, = 0.5 x 10718 km/sec4. If

the altitude =z is zero , we find, with the aid of Table 1, * .

O~ =0~ = 6.4 X 10-6g, not too different from the o~ obtained
€, g, g,

in Chap I. The integration length L = 7900 km which may again be excessive

for some applications! The fluctuations themselves have rms values:

20 o dsmk AT Mo
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g = JB @ = vﬁ;; = 4.6 x 10 g

(The three shallowest layers of the Heller model give a somewhat

lower value than assumed earlier.)

Example 2: Estimation of gy from ny and Pyz (»>r of g, from sz and
)

If g
€y

joo -2k35 +0,
: X (=s), ¥, (-s)
OE = 25 j S [*1 : 2 ]
y ljm —6k,s 24K+ [ \y,(s)

2k3 vl(S)
+ [¥,(-s),V¥ (-s)]( + (-2k,s, 6k,) >+ 2k, _)ds
1 2 - 3 4 *2(5)

4

"

vl(s)(I‘xy + nl) + tz(s)(PyV + nz) 5

|

ae
1
= =3 5 {2k3[1+sw1(-sﬂ[l-svf0ﬂ + mnvl(—s)vl(s)
jeo
+ 6k, (=s)[1 - sy, (s)]

+ 6k4[1+sw1(-s)]¢2(s) + (24k5+qh)¢2(-s)¢2(s) d

This is minimized by choosing wl(s), wz(s) so that

1 - swl(s) -0 as s o ©

‘Vz(s) - 0 as 8 5 ®

has no LHP poles,

/ 2
(:sts +Q 6k,s wl(s)

-6k ,s 24%,+Q, wz(s)




The asymptotic result for small P, is:

Vs = —=g=, wv,06) = —A

s + CE) s + (%?

{ where )\ = k4/4k5L, and where the integration length L is now:

‘i 2

! Jzka < 3k, )

| Rk Segal .
b P 4k_k

35

1 The resulting mean-squared estimation error is:

‘ 1 e
| % = I3 o {2k3[1 - sy, (s)] + 6k4v2(s)]}ds
y - :
4 2k, 3k3
| = — = -
; o 6hky = 2K3P\! ik, ) -

In our numerical example, the additional information provided by

the additional measurement is not substantial; OE is reduced by 7%
y

S aacs

percent, and L by 15 percent,

Example 3: Estimation of gy from rxx
84 g = V(s)(T,, + n) ,
2 s " 4 3 3. 2
% = i [WE=8) (ks +p I¥(s) + k; s ¥(s)-¥(~s)k s~k s"}ds 1
1 . joo 2
Sl La [k 8T [14sy(=5) ][ 1-s¥(s)] + @ ¥(=5)¥(s)}ds |

which is minimized by choosing V{(s) so that

-26-
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poss i

s[1 = sy(s)] » O as s o ®

(kls4 + qh)w(s) has no LHP poles .
Hence,
s+ 2
s e e S
2
g L

" . : 4
a second-order 1ntegrator" with integration length L = (4k1/qh)l/ .

The mean-squared estimation error is

S 4k b 3
g = === § (-k;s)[1-sy(s)]ds = _31 = (4k, )

c L

1/4

This, again, is similar to the result obtained with the one-dimen-

sional gravity fluctuation model.

In our numerical example, OE =3, X 10-6g and L = 2500 km.
x

Example 4: Estimation of gy from rxx and rxz .

If g = vl(S)(I‘xx + nl) + Y, (s)r
4 J 3
2 1 Jeo 15+, -k,s ¥, ()
% * 3 s [vy (=5, ¥, (=5)] . ; R
- S je koS =2k, 8+ ¥y (s)
-klss WI(S)
3
+ [Wl(s),vz(-s)] : +(k1S , —ky8) -k s )ds
kS wz(s)

= (cont'd next page)
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jeo
1 2
= 2—,“- s -kls [1+sv1(-s)][l-sw(s)] + Q)nwl(-s)vl(s)
-J’
2 2
kzs vz(—s)[ l-swl(s)] - kzs [1+sw1(-s)]v2(s)
2
{ + \yz(—s)(—2kss + q)n)\lrz(s) ds ,
)
i
; which is minimized by choosing qu(s), \yz(s) so that i
i -
} s[1 - SWI(S)] - 0 as S o ®
! sy, (s) -0 as s o> @ E
}j kls4+cpn -k2s3 \lll(s) _ .
i 3 2 has no LHP poles . |
“ L k,s -2k s"4q ¥y (s) i
The asymptotic solution, for small Py is:
‘i ik
i L -\/L
| \kl(s) = : \yz(s) = — 1
e 2.3 3 2,2, 2 |
e 2 £t
| where k, ax, ( k: > 1/4 ’
| x = e and L =] — 1l - y 2
‘ k3L Y 2k1k3
' The mean-squared estimation error is {
i |
| 2 1 2 2 ;
i oEx ol T § [-kls [l-svl(s)] - ks wz(s)}ds ‘
: c
2 1/4
4k1 lkzL 3 k2
e G SRetn W e e ) gl
L 1 2klk3
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Again the improvement due to the additional information, in this
case F*z, is minor. In our numerical example L is reduced by 10 per-

cent and O by only 5 percent.

g*
A similar analysis applies to the inclusion of a 3rd measurement,
Pzz' in the estimation of By The improvement turns out to be equally
minor,

However, the inclusion of the measurement, Fxx' in the estimation
of g, from sz does not lead to a simple "slow" filter. The results
from the one-dimensional density fluctuation model suggest that there

may be a substantial improvement over the first order integration of
., @although this may have been related to the identity ryy == 3% .

which applies only to the one-dimensional fluctuation model.

C. RATIONAL APPROXIMATIONS AND OPTIMUM FILTERING

The calculation of the optimal (Wiener) filter without the low-
frequency approximation (8) is possible only after the Bessel functions
Kl(ﬂ) in (6) have been approximated by rational functions, The simplest

approximation for KI(Q) which will serve our purpose is

KI(Q) ™ 9)

The function KI(Q) and its approximant one shown in Fig, 1, for the

® g
values B = 8/3 which preserves the correct value for So nskl(ﬂ)dﬂ
and hence for O? .

xx

The direct evaluation of the optimum filter will be laborious,
especially in the case of more than one measurement, An alternative

but equivalent, approach is described in the next section,

o
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D. FINITE STATE MODEL

We will discuss how to construct a model in which the components
e of E and of the gravity-gradient tensor ' form part of a finite
state which obeys a linear evolution in response to a finite white-noise
input., The optimal estimates and their accuracy will then be obtainable

from the steady-state solution of a standard matrix-Riccati equation,

For each layer (i = 1, 2, 3) we build a model for gy and Fyz as follows:

ey
=2

w By . T

S PSRt

s R e i o il

L T,

-'i
by
<
~
N
3 ’_‘N

Y
w

R
i

FIGURE 1I-2

Fyz = hl(S)Wl

s et i

3 gy/zzi = hz(s)w1 + ha(s)w2

% where S denotes jO, and Wl, w2 are independent white-noise inputs

with spectral density “K/ﬂ(zzi)s . The transfer functions hi(S)

must lead to the rational approximation, obtained with (9), to the |}
|

spectral-density matrix: E

|
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5 4
P g’ Clryrre )=kt (0] kyrr(e) - kj(0)]

g/ \ot K k(@] Ctre(a) x(9)]

This leads to:

i Py(-s)
! (a) h.(s) = =
3 ¥ s
1 ot
|
| where P3(S) is a certain cubic with LHP zeros;
{
e . P (SZ)

3 (b) b 2

h,(s) =

(1 + %)spa(s)

where P2 is a certain quadratic polynomial;

P,(xs)
5
(1 + TS)) pa(s)

where P4 is a certain quartic,

(c) h3(S ) =

is more elaborate, as shown in Fig,

The model for g, g, r




Wy
> > h, »I
22
: h
B

|;', h I
| | 7 |
4 ‘
/z g |
{ X
! »—1lh »{ + — ‘
‘ o 8 |
| W 22y :
il 6 |
3 > h {
| 9 |
4 {
| FIGURE II-3 ?

U h4(s)w4 E
@ < gz/zzi = hs(S)W4 + ha(s)w5
i

8,/22, = h7(S)W4 + hs(s)w5 + hg(s)w6

9 .

where again w4, Wﬁ, W6 are independent white-noise inputs with spectral-
density ¢fﬁt(221)5, and the transfer-functions hJ(S)(j =4 - 9) lead
to the rational approximation, obtained with (2.9), to the spectral-
density matrixﬁ

5 4 4
. Teere 1t 3 1t
bt Ky () @Ky (9) JQKY ()

- 3 =8
g,/22::(  G'K111(0) Q7K1 (9) ki (Q) .

¢ \oi0d 3 3
8,/22,t \-j2 K ' (Q) -jQ Ki(“) 0 Kl(“)
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e

SgnbiEin

o chik i Sk A i A

This leads to:

(a)

where

(b)

where

where

(a)

- where

where

(£)

where

P:(-S)
gk

PZ(S) is a certain quartic with LHP zeros;

h,(s)

Pi(s®)(1 - )

by () gt
S o
(x+ 3) P;(s)
P; is a certain cubic;
P_(-S)
6
hG(S) = 5

S *
(1 + B) 94(3)
PG(S) is a certain sextic with LHP zeros;

S P;(Sz)(l - %)2
h-’(s) o 5
(1 + %) P,(s)

P; is a certain quadratic;

S Ps(Sz)(l - %)

hs(s) = 4
(1 i %) p:(s)ps(s)

P5 is a certain quintic;

s Plo(i s)

h(s) = 3
(1 +2) py(s)p(s)

Plo is a certain 10-th degree polynomial,
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The total effect of all three layers (i = 1, 2, 3) is obtained
by adding in parallel three appropriate versions of Figures II-2 or II-3,

It is planned to carry through this finite-state approximation
and the resulting optimal filters, in order to obtain an (approximate)
check on the range of validity of the asymptotic filters obtained for |
s high measurement accuracy. It is hoped also to investigate the asymp-

totic form, if any, of the estimate of g, When rxx and sz are both

measured, and to see if the improvement obtained with rxx in the case

of a one-dimensional density fluctuation model carries over to the more

realistic model,
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Appendix 1

CHANDRASEKHAR ALGORITHM

According to Kailath [Ref, 1], the Chandrasekhar type algorithm is

described as follows,

Suppose we have a process with a known state-space model of the

form
yi =Hx1+Vi
i=>0
x. = Fx., + GU,
i+l i i
i where
|
‘ ' = * - Rt
’( EUiUi qbij' EViVj Ruij
L
F EUiVJ = 0
\ Al -4 r = = T L}
Exoxo = no EUixo =0 = Evixo A

Assume that {F, G, H, Q, R} are constant matrices with dimensions

nxn, nxm pXn, mxm p XPp.
Let

~1 :
2 ' - ' ' ' -
D = FnoF + GQG' FnoH (R+Hﬂoﬂ ) HnoF HO

and assume that we can represent it (nonuniquely) as

= M L'
D Lo OLO

where LO and Mo are n x a and ¢ X ¢ matrices, «Q = rank D, and

M, = diag (3, 35585 canley 0y =85 .oy 2}

with as many + l's as D has + eigenvalues. Then the quantities

§ ' {Ki’ Rf] appearing in the estimator formula

-3 7=
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s i 1l b 1 AR 0 Al e O

A ~ €\-1 A
Speafs " Py t K () (v, - “"1|1-1)

can be computed via the equations

€ o € Paale s |
| Ry,, = R; - HL, (Ry) 'LiH "
é r r €y-1
l = - L'H' =
; Ry = Ry - L' (Ry) "L,
3 K = K,-FL (RY) 'L'm’
; - V5 SR | E i
§ €\~-1

Ly = Py~ E(R) "L,
4 ' where the initial values are

ERI - n 4 ) -1
{ Ro =R + HIIOH - Ko = FIIOH 3 Ro = llo .
ﬁ The number of computations required to go from index i to index
J i+1 can be seen to be O(nz(p+a)) as compared to 0(n3) if the
4
‘ } Riccati equation is used. For special initial conditions, matrices
E D, Lo, and MO are given as follows:
§ ; (a) “0 = 0 (perfect a priori knowledge of the states);
f D = GQG', LO=GQ}’ and Mo=l.
i
i -
! (b) ﬂb = I (stationary process) 1
i - 1
' FIIF' + GQG' =1 !
ﬁ D = -Mu'(R + HOH') 'HE ?
: E
i L, = M'(R+ 1 o ' i
’! : M, = -I.
2 If the error covariance matrix P1+1 is desired, it may be com- 5
|
3 puted as -H
-38-
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